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Abstract Hydropower operations optimization subject to environmental constraints is limited by chal-
lenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydro-
dynamic and water quality models within optimization schemes is driven by improved computational
capabilities, increased requirements to meet specific points of compliance with greater resolution, and the
need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an
important advancement for computing hourly power generation schemes for a hydropower reservoir using
high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of
the high-fidelity hydrodynamic and water quality model CE-QUAL-W?2 is successfully emulated by an artifi-
cial neural network, then integrated into a genetic algorithm optimization approach to maximize hydro-
power generation subject to constraints on dam operations and water quality. This methodology is applied
to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity
reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to
actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an
expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous tem-
perature and DO constraints revealed capability to address multiple water quality constraints at specified
locations. The reduced computational requirements of the new modeling approach demonstrated an ability
to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrody-
namic and water quality information as part of the optimization decision support routines.
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Figure 1. Methodology overall approach.
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Figure 4. Examples of validation simulation results for (a and b) Old Hickory discharge temperature and (c and d) Old
Hickory discharge DO. Discontinuities in the curves represent times with neither spill nor turbine discharge present.
CE-QUAL-W2 outcomes shown here and used in initial NARX training are smoothed on a 24 h moving average.



Single Model Runtime Optimized Schedule Feasible

Computation Time
CE-QUAL-W?2 6 min 7 months NO

NARX 2 sec 40 hours YES

Table 3
Summary of Experiment 1 and Experiment 2 Results

Mean hourly  Mean hourly Energy

DO Temperature Iterations Time DO violation  temperature  produced Generation
constraint constraint required (min)? (mg/L) violation ( C) (MW h) value ($)°
Exp. 1:
> 5 mg/L 3 190.8 0 10,050 $868,250
> 6 mg/L 4 2543 0 10,100 $866,500
> 7 mg/L 16 997.3 0.035 8,825 $730,000
> 8 mg/L 14 1436.1 0.344 2,600 $171,500
Exp. 2:
> 7 mg/L >25°C 13 19159 0.005 0.071 4,300 $316,000

“Time to complete optimization of series of subproblems, not including CE-QUAL-W?2 simulation or NARX retraining
time.

®Generation value determined using assumed cost curve shown in Figure S2.

~7% increase in $SS relative to actual operations



